Pyridoxal phosphate and hepatocyte growth factor prevent dialysate-induced peritoneal damage.

نویسندگان

  • Sakurako Nakamura
  • Toshimitsu Niwa
چکیده

Glucose-based peritoneal dialysate (PD) is responsible for increased accumulation of advanced glycation end products (AGE) in the peritoneum of continuous ambulatory peritoneal dialysis patients. Pyridoxal 5'-phosphate (PLP), a derivative of vitamin B(6), protects proteins from glycation. Hepatocyte growth factor (HGF) heals damaged tissues in a reciprocal manner against TGF-beta1. First, with the use of gas chromatography-mass spectrometry, whether PLP traps 3-deoxyglucosone (3DG), a major glucose degradation product in PD, was determined. Then, whether rat peritoneal tissue damages induced by intraperitoneal administration of glucose-based PD is ameliorated by PLP or HGF was examined. In vitro incubation with PLP markedly decreased concentration of 3DG in a dose-dependent manner, demonstrating the 3DG-trapping effect of PLP. The peritoneum of PD-treated rats was significantly thickened compared with that of physiologic saline-treated rats. Both PLP and HGF prevented the thickening of rat peritoneum induced by PD and ameliorated accumulation of AGE and expression of TGF-beta1, vascular endothelial growth factor, and type 1 collagen and a number of blood vessels. Furthermore, expression of HGF was significantly increased in the peritoneum of PLP-treated rats compared with that of PD-treated rats. In conclusion, PLP shows 3DG-trapping effect. PLP and HGF prevented peritoneal thickening; accumulation of AGE; expression of TGF-beta1, vascular endothelial growth factor, and type 1 collagen; and neoangiogenesis in rat peritoneum induced by PD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hepatocyte growth factor signalizes peritoneal membrane failure in peritoneal dialysis

BACKGROUND Hepatocyte growth factor (HGF) counteracts peritoneal fibrosis in animal models and in-vitro studies, but no study explored effluent HGF in peritoneal dialysis (PD) patients with ultrafiltration failure (UFF). Our aim was to assess the relationship between effluent HGF with UF profile, free water transport (FWT) and small-solute transport. METHODS We performed 4-hour, 3.86% PET wit...

متن کامل

Effect of glucose on intercellular junctions of cultured human peritoneal mesothelial cells.

During continuous ambulatory peritoneal dialysis, the peritoneum is directly and continuously exposed to unphysiologic peritoneal dialysis fluid; the resulting mesothelial damage has been suggested to cause loss of ultrafiltration and dialysis efficacy. The present study investigated the effect of a high glucose concentration on cultured human peritoneal mesothelial cells to clarify the cause o...

متن کامل

Long term effects on mineral and bone metabolism by low versus standard calcium dialysate in peritoneal dialysis: a meta-analysis.

BACKGROUND Low calcium dialysate with 1.25 mmol/l calcium concentration has been proposed to replace standard calcium dialysate in peritoneal dialysis patients taking calcium-containing phosphate binder to prevent hypercalcaemia. We conducted a meta-analysis to evaluate long term effects on mineral and bone metabolism by low versus standard calcium dialysate in peritoneal dialysis. METHOD Cli...

متن کامل

Connective tissue growth factor (CTGF/CCN2) is increased in peritoneal dialysis patients with high peritoneal solute transport rate.

Peritoneal fibrosis (PF) is an important complication of peritoneal dialysis (PD) therapy that often occurs in association with peritoneal high transport rate and ultrafiltration failure (UFF). To study the possible pathogenic role of connective tissue growth factor (CTGF) in the relationship of PF and UFF, dialysate CTGF contents (n = 178) and tissue CTGF expression (n = 61) were investigated ...

متن کامل

High-Dialysate-Glucose-Induced Oxidative Stress and Mitochondrial-Mediated Apoptosis in Human Peritoneal Mesothelial Cells

Human peritoneal mesothelial cells (HPMCs) are a critical component of the peritoneal membrane and play a pivotal role in dialysis adequacy. Loss of HPMCs can contribute to complications in peritoneal dialysis. Compelling evidence has shown that high-dialysate glucose is a key factor causing functional changes and cell death in HPMCs. We investigated the mechanism of HPMC apoptosis induced by h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 16 1  شماره 

صفحات  -

تاریخ انتشار 2005